Portals and Rails

About


Portals and Rails, a blog sponsored by the Retail Payments Risk Forum of the Federal Reserve Bank of Atlanta, is intended to foster dialogue on emerging risks in retail payment systems and enhance collaborative efforts to improve risk detection and mitigation. We encourage your active participation in Portals and Rails and look forward to collaborating with you.

« Be Sure to Dot Your I's and Cross Your T's in Vendor Agreements | Main | Securing All the Links in the Chain: Third-Party Payment Processors »

September 24, 2013


Using Analytics to Improve Credit Quality

With consumer credit products such as mortgages and payday loans occupying headlines, credit card portfolios have been quietly and steadily marching towards improvement in quality over the last three years, according to data released by the Fed’s Board of Governors. As the chart shows, seasonally adjusted charge-off rates are down to 3.9 percent, and delinquency rates are at 2.6 percent for the largest 100 commercial banks in the United States, the lowest rate since the Federal Reserve began tracking this statistic at the start of 1991.

Credit Card Charge-Offs and Delinquency Rates: Top 100 US Commercial Banks

But how have credit card issuers been able to improve the quality and profitability of their card portfolio since the severe economic impact felt by all during the recession? One of the many tools the Board identified—and one cited by portfolio managers—is the increasing use of analytics. Issuers collect and comb vast amounts of data from a variety of sources to ensure that cardholders are equipped to manage their balances.

Credit issuers use analytics for a variety of purposes, including establishing credit limits, monitoring ongoing credit quality, targeting marketing efforts, and detecting fraud. They perform analytics at the individual cardholder level—looking at credit history and purchasing patterns, for example—as well as at the customer segmentation level to identify correlations between certain data elements and indicators of potential changes in credit quality. The increased power of these analytical tools over the last decade is due primarily to the incredible advancements in data collection and analysis technology. These advances have provided issuers with the ability to run sophisticated "what if" models to determine how changes in various key attributes of cardholders or in the overall economic environment will affect the quality of their portfolio.

Clearly, many of the issuers have taken other proven steps to improve the credit quality of their portfolios: they’ve reduced credit lines and increased payment monitoring management for existing accounts during and after the recession. And they applied more stringent credit policies, making it more difficult for new applicants to be approved (or likelier to be approved at lower credit limits than they would have been before). These are all sound risk management techniques. But data analytics has been a very powerful additional tool, allowing issuers to make huge strides in ensuring ongoing credit quality.

How are you using increased technology capabilities to improve your risk management capabilities?

Photo of David LottBy David Lott, a retail payments risk expert in the Retail Payments Risk Forum at the Atlanta Fed

September 24, 2013 in cards, debt, innovation, payments study | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a01053688c61a970c019aff958780970c

Listed below are links to blogs that reference Using Analytics to Improve Credit Quality:

Comments

Data and analytics can provide a competitive advantage for financial institutions (FIs) of all sizes. Sophisticated models can lead to better decisions and improve your institution's risk management, marketing, price optimization, offer optimization, and more. Arguably, the most important area is risk management. FIs need to find their happy median for risk. Effective decisioning won’t be profitable if high-risk customers are approved for too many cards or approved for credit limits that will overreach their ability to pay, but FIs also don’t want to necessarily turn a consumer away due to an address discrepancy. The FIs that can most effectively leverage their data and analytics will gain the competitive edge. It appears many credit card issuers have already figured this out.

Posted by: Christina Lysacek | October 21, 2013 at 02:53 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

Google Search



Recent Posts


December 2014


Sun Mon Tue Wed Thu Fri Sat
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

Archives


Categories


Powered by TypePad